# run the trials def run_trials(params, repeats=5): # test each parameter all_scores = list() for param in params: scores = list() for repeat in range(repeats): score = fit_evaluate_model(X_train, y_train, X_test, y_test, param) score = score * 100.0 print('>Filter=%d #%d: %.3f' % (param, repeat+1, score)) scores.append(score) all_scores.append(scores) performance_summary(all_scores, params) # run n_filters = [8, 16, 32, 64, 128, 256] run_trials(n_filters)