# summarize performance (accuracy, mean, sd) def performance_summary(scores, params): print(scores, params) for score in range(len(scores)): m, s = mean(scores[score]), std(scores[score]) print('Filter=%d: %.3f%% (+/-%.3f)' % (params[score], m, s)) # boxplot of scores plt.boxplot(scores, labels=params) plt.savefig('cnn_filters.png')